

Background

GNNs fail to capture long-range interactions due to topolog-

Research questions

- When is spectral gap maximization/minimization beneficial?
- How does the graph-task alignment influence performance?
- Can the community structure of the graph and the node **features** form better graph rewiring criteria?

Theory on (p,q)-SBMs

- 1. Spectral gap $\lambda_1 \sim -(p-q)/(p+q)$. Maximizing it means $\downarrow p$ and $\uparrow q$, which destroys communities.
- 2. If task labels = community membership labels (high alignment), destroying them is harmful.
- 3. If the alignment changes, this is not necessarily the case. But spectral gap rewiring cannot tackle this.

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring

Celia Rubio-Madrigal^{* 1} Adarsh Jamadandi^{* 1,2}

*Equal contribution

¹CISPA Helmholtz Center for Information Security

(a) Original graph.

(p,q)-SBM adjacency matrices for different alignments ψ .

In Fig. (d), the blocks match classes c_1 and c_2 , so $\psi = 1$.

In Fig. (e), a third of each block is of opposite class, so $\psi = \frac{2}{3}$.

(b) Maximization.

Rewiring methods

ComMa: Draws edges to \uparrow or \downarrow community strength. **FeaSt:** Prioritizes edges that \uparrow feature similarity. **ComFy:** \uparrow similarity proportionally to each community.

Rebekka Burkholz¹

²Universität des Saarlandes

(c) Minimization.

(e)
$$\psi = \frac{2}{3}$$
.

	Methods	Cora	Citeseer	Chameleon	Roman-Empire
	GCN	86.12±0.36	77.83±0.35	39.33±0.59	70.30±0.73
	GCN+SPAddMax GCN+SPAddMin GCN+SPDelMax GCN+SPDelMin	85.92±0.43 84.10±0.39 86.32±0.38 85.92±0.37	79.25±0.35 78.77±0.40 81.84±0.38 79.01±0.34	38.20±0.70 39.33±0.55 39.33±0.70 39.89±0.59	77.54±0.74 79.18±0.06 77.45±0.68 79.09±0.05
	GCN+FeaStAdd GCN+FeaStDel GCN+ComFyAdd GCN+ComFyDel	87.73±0.39 90.74±0.39 87.73±0.26 <u>88.13±0.27</u>	78.54±0.34 <u>81.60±0.39</u> 77.36±0.38 78.07±0.35	<u>43.26±0.62</u> 42.70±0.69 41.57±0.83 45.51±0.76	79.67±0.07 78.99±0.05 <u>79.53±0.07</u> 79.17±0.07

SPAddMax & SPDelMax from Jamadandi et al., (NeurIPS, 2024)

We show that leveraging **node features** to rewire the graph can significantly boost GNN performance.

Moreover, spectral gap based rewiring and other topologybased methods are **insufficient** because they fail to account for the alignment between the graph and the task.

ComMa		FeaSt		ComFy	
mMa 🛛	HigherComMa	Add	Del	Add	Del
v and $k floor$ edges	If Add, draw and add $\left\lfloor \frac{A}{A+C} \cdot k \right\rfloor$ edges	Add top k of sim (u, v) for $(u, v) \in \overline{\mathcal{E}}$	Delete bottom k of sim (u, v) for $(u, v) \in \mathcal{E}$	$ \begin{array}{c} FeaSt\left(\left\lfloor \frac{A}{A+B+C} \cdot k \right\rfloor\right) \\ Add\left(\left\lfloor \frac{A}{A+B+C} \cdot k \right\rfloor\right) \end{array} $	$\operatorname{FeaSt}\left(\left\lfloor \frac{A}{A+B+C} \cdot k \right\rfloor\right)$
v and ges	If Del, draw and delete k edges			$\operatorname{FeaSt}\left(\left\lfloor \frac{B}{A+B+C}\cdot k\right\rfloor\right)$	$\operatorname{FeaSt}\left(\left\lfloor \frac{B}{A+B+C} \cdot k \right\rfloor\right)$
v and $k floor$ edges	If Add, draw and add $\left\lfloor \frac{C}{A+C} \cdot k \right\rfloor$ edges			$ \begin{array}{c} FeaSt\left(\left\lfloor \frac{C}{A+B+C} \cdot k \right\rfloor\right) \end{array} $	$\operatorname{FeaSt}\left(\left\lfloor \frac{C}{A+B+C} \cdot k \right\rfloor\right)$

Experiments

Conclusions