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Background Theory on (p, ¢)-SBMs
I I
Information  flow issues like over- = \WWhen is spectral gap maximization 1. Spectral gap Ay ~ —(p —q)/(p + q).

squashing limit GNNs' performance. or minimization beneficial? Maximizing it means | p and 71 g,

Rewiring the graph can mitigate them. which destroys communities.

= How does graph and task alignment
influence GNN performance? 2. If task labels = community
membership labels (high alignment),

= Can graph (or communities) and task o ther fe b |
Insight: Maximizing the spectral gap (or features) be leveraged together destroying them is harmtul.
can destroy community structure. This to rewire GNNSs' input graphs? 3. If the alignment changes, this Is not
can be harmful, espe(:laHy when node Nnecessar |y the case But spectra
labels a‘lgﬂ well with communities. oap rewir| ng cannot tackle this.
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. Adjacency matrices of (p, q)-SBMs for different 0.2 (3:2:8:2)
Z 860 alignments. In Fig. (a), the two blocks match
«000 | | | | classes ¢, and ¢,. In Fig. (b), a third of the nodes S e
20 25 30 540 45 in each block are of opposite class. 03 04 05 06 07 08 09
NMI between Community and Labels SpectralGap
Experiments
.
* ComMa: Randomly draws edges to We show that incorporating features
modify community strength Hethods “ore | titeseer bhameleon Roman Empre into graph rewiring significantly boosts
Y 4 5. GCN 86.12+0.36 77.83+0.35 39.33+0.59 70.3020.73 GV\INg P S g\/l Y
_ . . GCN+ProxyAddMax 85.92+0.43 79.25+0.35 38.20+0.70 77.54+0.74 erformance. oreover, spec-
* FeaSt: Prioritizes edges that GCN+ProxyAddMin 84.10+0.39 78.77+0.40 39.33+0.55 79.18+0.06 fral rap:)h owirine and other to O\E _
maximize feature similarity. GCN+ProxyDelMax 86.32+0.38 81.84+0.38 39.33+0.70 77.45+0.68 Lral 8 g POIOEY

GCN+ProxyDelMin 85.92+0.37 79.01+0.34 39.89+0.59 79.09+0.05 hased methods are insufficient because

o o GCN+FeaStAdd  87.73+0.39 78.54+0.34 43.26+0.62 79.67+0.07
= ComFy: Maximizes similarity GCN+FeaStDel ~ 90.74+0.39 81.60+0.39 42.70+0.69 78.99+0.05 they fail to account for the alignment
- N - GCN+ComFyAdd 87.73+0.26 77.36+0.38 41.57+0.83 79.53+0.07
proportionally to each community. GCN+ComFyDel 88.13+0.27 78.07+0.35 45.51£0.76 79.17+0.07 netween the graph and the task.
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