

Background GNNs may suffer from two issues: **over-smoothing** (node features become indistinguishable with more layers) and **over-squashing** (restricted information flow via bottlenecks).

Common approach: Rewiring the graph by different criteria, like maximizing the spectral gap by adding edges. However, this can worsen over-smoothing, so over-squashing and over-smoothing are usually treated as opposites [1, 2].

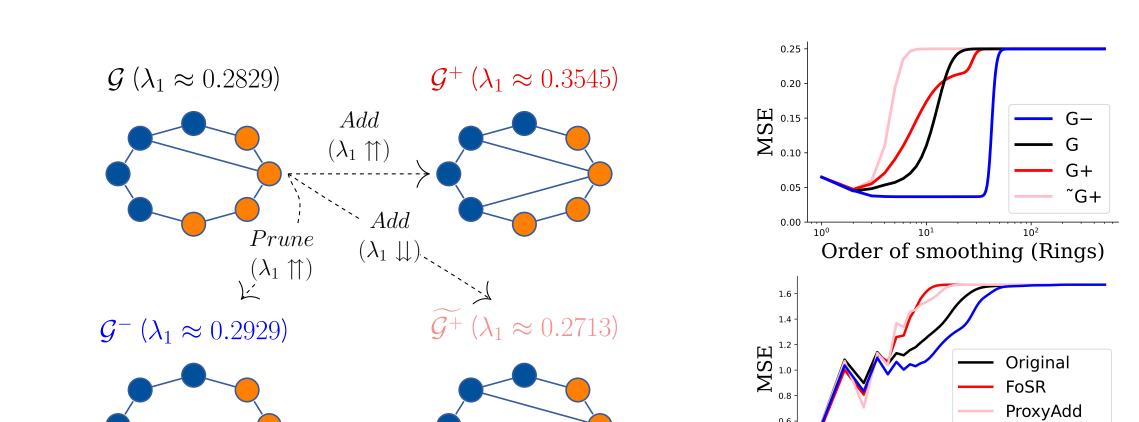
Main contribution

Introducing the Braess paradox: Adding extra capacity to a network can, in some cases, lead to a reduction in overall flow (and viceversa) [3, 4].

Therefore, we can find **edge deletions** that maximize the spectral gap.

Key idea: Over-smoothing and over-squashing are not a trade-off, because maximizing the spectral gap by edge deletions:

- 1. Helps reduce over-squashing, both theoretically and empirically.
- 2. Helps reduce over-smoothing, as defined in the testbed by [5] which considers node features in addition to the graph structure.


Spectral Graph Pruning Against Over-Squashing and Over-Smoothing

Adarsh Jamadandi^{* 1,2} Celia Rubio-Madrigal^{* 2}

*Equal contribution

¹Universität des Saarlandes

²CISPA Helmholtz Center for Information Security

Proposed rewiring methods

- EldanAdd/EldanDelete: Based on a lemma by [4] that states a sufficient condition for the Braess paradox to occur.
- 2. **ProxyAdd/ProxyDelete**: Better and constant-time approximation of λ usin matrix perturbation theory [6, 7]:

$$\dot{\lambda} \approx \lambda + \Delta w_{u,v}((f_u - f_v)^2 - \lambda (f_u^2 + f_v^2))$$

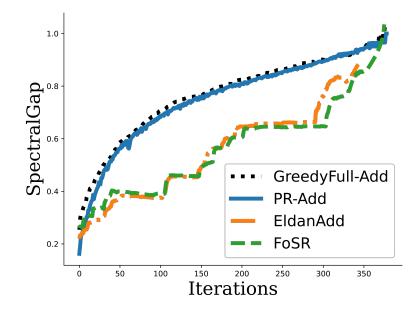
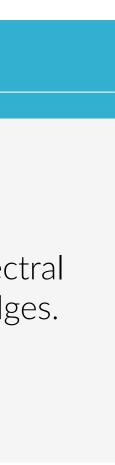


Table 1. Runtimes (in seconds) for 50 edge modifications.

Method	Cora	Citeseer	Chameleon	Squirrel
FoSR [1]	4.69	5.33	5.04	19.48
SDRF [8]	19.63	173.92	17.93	155.95
ProxyAdd	4.30	3.13	1.15	9.12
ProxyDelete	1.18	0.86	1.46	7.26

[1] Karhadkar, K. et al. in ICLR (2023). [2] Giraldo, J. H. et al. in ACM CIKM (2023). [3] Braess, D. Unternehmensforschung 12, 258–268 (1968). [4] Eldan, R. et al. Random Structures & Algorithms 50 (2017). [5] Keriven, N. in LoG (2022). [6] Stewart, G. et al. (1990). [7] Bojchevski, A. et al. in ICML (2019). [8] Topping, J. et al. in ICLR (2022). [9] Dwivedi, V. P. et al. in NeurIPS (2022). [10] Platonov, O. et al. in ICLR (2023). [11] Chen, T. et al. in ICML (2021).

Rebekka Burkholz²


Trade-off counterexample: \mathcal{G}^- has one fewer edge than \mathcal{G} but a higher spectral	Experimental evidence			
gap and a lower rate of smoothing (in black vs. blue \downarrow).	GNN benchmarks: Improvements on the Long Range Graph Benchmark [9] (T2) and on large heterophilic datasets [10] (T3).			
$\mathcal{G} (\lambda_{1} \approx 0.2829) \qquad \mathcal{G}^{+} (\lambda_{1} \approx 0.3545) \qquad \qquad \stackrel{0.20}{\overset{0.15}{\overset{0.15}{\overset{0.15}{\overset{0.16}{\overset{0.15}{\overset{0.16}{0.16$	Lottery tickets: We can use our methods to find Graph Lottery Tickets. We compare them with UGS [11] (T4). Our methods can provide a stopping criterion, and can be used to perform Pruning at Initialization.			
$\mathcal{G}^{-}(\lambda_{1} \approx 0.2929)$ $\mathcal{G}^{+}(\lambda_{1} \approx 0.2713)$ $\mathcal{G}^{+}(\lambda_{1} \approx 0.$	Table 2. Amazon-Ratings. Table 3. Long Range Graph Benchmark. Method #EdgesAdded Accuracy #EdgesDeleted Accuracy Layers GCN - 47.20±0.33 10 GCN+FoSR 25 49.68±0.73 - - 10 GCN+FoSR 25 48.71±0.99 100 50.15±0.50 10 GCN+Proxy 10 49.72±0.41 50 49.75±0.46 10 GAT - 47.43±0.44 10 74.43±0.44 10 GAT+FoSR 25 51.36±0.62 - 10 GAT+FoSR 25 51.68±0.60 50 51.80±0.27 10 GAT+Forxy 20 49.06±0.92 100 51.72±0.30 10			
Proposed rewiring methods	GCN - 47.32±0.59 - 47.32±0.59 20 GCN+FoSR 100 49.57±0.39 - 20 GCN+Eldan 50 49.66±0.31 20 48.32±0.76 20 GCN+Proxy 50 49.48±0.59 500 49.58±0.59 20			
 EldanAdd/EldanDelete: Based on a lemma by [4] that states a sufficient condition for the Braess paradox to occur. 	GAT - 47.31±0.46 - 47.31±0.46 20 GAT+FoSR 100 51.31±0.44 - - 20 GAT+Fldan 20 51.40±0.36 20 51.64±0.44 20 GAT+Proxy 50 47.53±0.90 20 51.69±0.46 20			
2. ProxyAdd/ProxyDelete : Better and constant-time approximation of λ using matrix perturbation theory [6, 7]:				
$\dot{\lambda} \approx \lambda + \Delta w_{u,v}((f_u - f_v)^2 - \lambda(f_u^2 + f_v^2))$	Conclusions			

- 1. Over-smoothing and over-squashing are **not necessarily diametrically opposed**: both can be mitigated by spectral based edge deletions.
- 2. We propose a greedy graph pruning algorithm that maximizes the spectral gap in a computationally efficient way. It can also be utilized to add edges.
- 3. We **connect literature** on three seemingly disconnected topics: over-smoothing, over-squashing, and graph lottery tickets.

